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This Rapid Communication presents a method of beam-divergence deconvolution for diffractive imaging.
First, the detected diffraction intensity is formulated as a convolution between the diffraction intensity of
parallel incident beams and the divergence of an incident beam. It is shown numerically that the convolution
causes the reconstructed image to shrink and become blurred. Next, the algorithm of deconvolution used in the
iterative Fourier phase retrieval method is applied to the convoluted diffraction intensity deteriorated by
quantum noise. Numerical simulations show that the proposed algorithm recovers the deconvoluted diffraction
intensity and improves the reconstructed image. Finally, the algorithm is applied to an electron-beam experi-
ment to reconstruct a multiwall carbon nanotube. The results verified that the algorithm reduces the influence

of beam divergence.
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In recent years, diffractive imaging has developed into a
powerful application for single-molecule imaging on next-
generation synchrotrons.'~* Using this method, one can re-
construct the structure of an object by achieving phase re-
trieval from a diffraction pattern in the Fourier domain.>®
The application of these diffractive imaging techniques to
x-ray scattering was advocated by Sayre.” The first ground-
breaking experiments, applying diffractive imaging to x-ray
diffraction,® were made possible by recent technical develop-
ments: namely, incident beams with sufficient intensity and
coherence, measurement systems having accurate linearity
and wide dynamical range, and high-performance computa-
tion for calculating numeral iterations of the Fourier trans-
form and inverse Fourier transform. Following this work,
several novel experiments were performed using x-rays, in-
cluding  experiments on  three-dimensional  (3D)
reconstruction,™'? biospecimens,''"!3 metallic materials,'*
and experiments using a femtosecond soft-x-ray free-electron
laser.”> However, in contrast to the large number of experi-
ments with x-rays, few applications have used electron
beams.!>!” One exception is our previous experiment em-
ploying a prototype 20-kV-electron-beam microscope with-
out a postspecimen lens to reconstruct a multiwall carbon
nanotube (MWCNT).!7 In this Rapid Communication, we
discuss the influence of incident beam divergence on the dif-
fraction pattern and demonstrate that the reconstructed size
of an object is limited to the transverse-coherence length,
which is affected by beam divergence. This influence has
also been discussed in previous studies.'>? In Ref. 20, nu-
merical experiments showed the dependence of the recon-
structed image in an x-ray experiment on the transverse-
coherence length. In Ref. 15, experimental results using
TEM showed numerically that the overall contrast of inter-
ference fringes is reduced due to the incoherent superposition
of different Fourier intensities. On the other hand, the condi-
tion of spatial coherence based on the oversampling rate was
defined.?! These works indicate that the necessary experi-
mental condition of parallel electron beams is difficult to
achieve using today’s instruments. In this Rapid Communi-
cation, we present a fundamental solution for the influence of
beam divergence. First, using a convolution model and nu-
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merical experiments, we confirm the influence of beam di-
vergence on a reconstructed image. Next, an algorithm of
deconvolution used in the iterative Fourier phase retrieval
method is applied to the convoluted diffraction intensity de-
teriorated by quantum noise. Finally, the algorithm is applied
to an electron-beam experiment of a MWCNT.

First, we formulated the convolution of the incident beam
divergence. We assumed the diffraction of a light-element
specimen (e.g., carbon) to be kinematical scattering. There-
fore, the intensity I,(k) of the diffraction pattern that is radi-
ated by an object f(r), using parallel incident beams, is pro-
portional to the square of the amplitude |F(k)| of the Fourier
transform  F{f(r)}:1,(k)=c|F(k)|*=|F{f(r)}|*>. Henceforth,
for simplicity, we will assume that the value of the propor-
tional coefficient ¢ is 1. The intensity I.,,,(k) convoluted by
the incident beam divergence h(k) of the point spread func-

tion is defined as follows:?2

o0

Ieony(K) = | Io(k = k")h(k")dk". (1)

—00

Using Eq. (1) and a model object, we simulated the influ-
ence of convolution on a reconstructed image of diffractive
imaging. Figure 1(a) shows the central area of the diffraction
pattern I, obtained by the Fourier transform of the model
object in Fig. 1(a’). The object, whose enlargement is shown
in the inset of Fig. 1(a’), is characterized by the four-wall
structure of the MWCNT used in the experiment.'” In Fig.
1(a), we can clearly observe the fine structure of interference
fringes corresponding to the vertical size of the object. We
assume the incident beam divergence has a Gaussian distri-

bution h(k;0)= ﬁrexp(—zk—;). The parameter of the standard
deviation o can be transformed to beam divergence « using
the relation a=(p/L)o, where L and p are the camera length
and the pixel size of a detector, respectively. Figures 1(b) and
1(c) show examples of convoluted diffraction patterns using
o=1.5 and 0=6.0, respectively. As the beam divergence in-
creases, the patterns become broader. Figures 1b’ and 1c’ are
corresponding reconstructed images. Comparing the three

images in (a’), (b"), and (c’), it can be seen that the object
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FIG. 1. (Color online) (a) The central area of the simulated diffraction pattern from the model object (a’). (a’) Structure of the object
characterized by four walls. The inset is an enlargement of the central area of the object. The width between walls corresponds to 0.34 nm

scaled by 0.095 nm/pixel. [(b) and (c)] The central area of a diffraction

pattern convoluted by beam divergence: o=1.5,6.0. [(b") and (¢')]

Images of the reconstructed object of diffractive imaging for =1.5,6.0. Diffractive imaging used the hybrid input-output (HIO) algorithm
(B=0.5, 1000 iterations) and the error-reduction (ER) algorithm (1000 iterations) tight support and real-positive constraints and started at a
random phase. (d) The central area of the diffraction pattern including both noise and beam divergence: o=1.5. (d’) The diffraction pattern
from direct deconvolution of (d) by the Richardson-Lucy algorithm (5000 iterations).

begins to shrink and become blurred not only in the vertical
but also in the horizontal direction [see the inset in (¢’)] as
the beam divergence increases. The transverse-coherence
lengths of o=1.5 and 6.0 calculated by the relation \/(2«)
using the experimental condition p=25 um, L=0.57 m, and
A=0.00858 nm at 20 kV are 65.2 nm and 16.3 nm, respec-
tively. The shrinking size indicates the same order of the
transverse-coherence length. Consequently, these results
demonstrate that the transverse coherence, which is affected
by beam divergence, is proportional to the amount of shrink-
ing in the size of the reconstructed image.

Second, we consider the conventional deconvolution of
the intensity /. contaminated by the quantum noise. When
the beam-divergence distribution is known, to recover I,
from Eq. (1), we can apply the deconvolution using the re-
lations of the convolution theorem F{I,*h}=F{I,}F{h}.
Note that the asterisk denotes the convolution. By applying
the inverse Fourier transform F~!, that is, the deconvolution,
we can analytically obtain [, as follows:

Iy=F"! Flleont (FLhy # 0) (2)
0 Fny |’ '

In an experiment without noise, applying the deconvolution
of Eq. (2) is effective. However, no physical experiment can
be conducted without errors such as the quantum noise, the
thermal noise in the detector, and the scattering from gases in
the vacuum of the electron optical system. In an experiment
with noise, it is well known that obtaining an accurate /;, by
Eq. (2) is difficult due to the noise division by the neighbor-
hood value of F{h}=0. The problem of noise division on
deconvolution has been richly studied using methods such as
those of Wiener, Richardson-Lucy (RL), and maximum
entropy.?

Next, using RL as an example and the same model object,
we simulate the deconvolution’s influence on the intensity of
the diffraction pattern I, contaminated by the quantum
noise. Figure 1(d) shows a simulated diffraction pattern I,
o=1.5 with the quantum noise. The intensity n was calcu-
lated by Poisson distribution P(n, p)=%, where p is an
expectation value, that is, the intensity without the noise at
each point. The diffraction pattern including the Poisson
noise is calculated as a random sample from the Poisson
distribution with the expectation value of each point on the
noise-free diffraction pattern. Figure 1(d) is obtained by the
noise-free diffraction pattern of the total count 107. The high-
intensity region (red and yellow area) is similar to the inten-
sity without the noise, which is shown in Fig. 1(b). The
low-intensity region (green and blue area) has noisy inten-
sity, according to the influence of the Poisson noise. The
algorithm of RL was formulated using /., /1, as follows:

I i —
Tiecony(t + 1) = Ligeony() — o h, 3
deco ( ) deco ( ) [dcconv( t) %l ( )

where ¢ is the number of iterations and / is the conjugate
function of A. Figure 1 d’ shows the deconvoluted intensity
Liecony that was calculated by RL (5000 iterations) using 7,
in Fig. 1(d) and h(k;o=1.5). No variation was observed in
the diffraction pattern after 4000, so we terminated the ex-
periment after 5000 iterations. Although the high-intensity
region (red and yellow area) is slightly recovered and has a
fringelike shape, the low-intensity region (green and blue
area) is not recovered due to the influence of the noise. As a
result, we confirmed that it is difficult to achieve sufficient
recovery for low intensity. Therefore, we need a useful de-
convolution method for the diffractive imaging, using a dif-
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FIG. 2. Two usages of the deconvolution for diffractive imaging. (a) The algorithm is basically the conventional one, which uses a
deconvoluted Fourier intensity as a Fourier constraint. (b) In the proposed algorithm, an iterative deconvolution is incorporated into the
conventional iterative phase retrieval. The Fourier amplitude constraint uses the root of the deconvoluted intensity. The deconvolution

utilizes an object-domain constraint.

fraction pattern deteriorated by Poisson noise.

Next, a deconvolution algorithm used in the iterative Fou-
rier phase retrieval method is applied to the convoluted dif-
fraction intensity deteriorated by quantum noise. In addition,
we demonstrate the effectiveness of the algorithm for im-
proving a reconstructed image. Figures 2(a) and 2(b) show
the algorithm of the conventional deconvolution used for
Fig. 1d’ and the algorithm of the proposed deconvolution,
respectively. The conventional algorithm (a) is the conven-
tional iterative phasing algorithm,>® using a deconvoluted
Fourier intensity as a Fourier constraint. In the proposed al-
gorithm (b), an iterative deconvolution algorithm, such as
Richardson-Lucy and maximum entropy, is used in the con-
ventional iterative phasing algorithm. If the incident beam
divergence is approximated as the delta function in this pro-
posed algorithm form, the form corresponds to the conven-
tional phasing method.

Using the proposed algorithm together with the RL algo-
rithm of Eq. (3) and the same model object in Fig. 1, we
simulate the deconvolution’s effect on improving a recon-
structed image in the case of a large amount of noise. Figure
3(a) is a graph of R-factor dependency on the number of
iterations usmﬁgF the proposed algorithm. The R factor is de-

fined by R= E(kkﬁvl POl 11 the graph, three diffraction pat-
terns were inserted at intermediate stages 2000, 5500, and
7000. The graph and patterns show how the original diffrac-
tion pattern that had deteriorated by beam divergence gradu-
ally improves its quality until it is almost the same as that

without the deterioration. Figure 3(b) shows the deconvo-

luted intensity at the final 10 000 iterations. The results dem-
onstrate that the diffraction pattern in Fig. 3(b) is similar to
the ideal pattern shown in Fig. 1(a). We confirmed the effect
of the proposed deconvolution by comparing the line profiles
of the diffraction pattern in Figs. 1(a), 1(d), and 3(b) [the
comparison is shown in Fig. 3(c)]. Figure 3(d) shows a re-
constructed image of the proposed algorithm. The recon-
structed image indicates that the convolution’s influence, i.e.,
the “shrinking,” is less than that in Fig. 1 b’. In addition, the
wall structures of the MWCNT were correctly reconstructed,
as shown in the inset of Fig. 3(d). These results clearly show
that the proposed algorithm for diffractive imaging was ef-
fective.

Finally, we demonstrate the effect of the proposed algo-
rithm on a practical problem. We applied the proposed algo-
rithm to diffractive imaging using the diffraction pattern
measured from a MWCNT.!” The experimental setup was as
follows: the acceleration voltage was 20 kV, the camera
length was 0.57 m, and the detector was an imaging plate
with a trimming size of 2048 X 2048 pixels. After the inci-
dent beam intensity was measured without a specimen, the
intensity was subtracted from the obtained diffraction pat-
tern. Figure 4(a) shows the distribution of the measured in-
cident beams. We assumed a uniform contour plot o=0,
=0,. The o on the beam distribution was estimated at
1.55+0.15 pixels(0.068 +=0.007 mrad). Figure 4(b) shows
the central area of the raw experimental diffraction pattern
with the same scale as in Fig. 1(a). A nonsymmetrical broad
pattern into the upper and lower directions is observed. The
nonsymmetry might be due to scattering noises from the
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FIG. 3. (Color online) (a) The graph of R-factor dependency on the number of iterations using the proposed algorithm. Three diffraction
patterns were inserted at intermediate stages 2000, 5500, and 7000. (b) The diffraction pattern from the application of the proposed algorithm
t0 Ipise» 0=1.5 in Fig. 1(d). (c) Comparison of profiles along central vertical lines in Figs. 1(a), 1(d), and 3(b). (d) An image reconstructed
from (b). Diffractive imaging using HIO with RL (real positive, 8=0.5, 5000 iterations) and ER with RL (5000 iterations) tight support and

real-positive constraints and started at a random phase.
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FIG. 4. (Color online) (a) Distribution of incident beam diver-
gence (3D and contour plot). (b) The raw experimental diffraction
pattern with the same scale as in Fig. 1(a). (b’) A reconstructed
image using the raw diffraction pattern. (c) The diffraction pattern
after the proposed deconvolution was applied. (¢’) A reconstructed
image using the deconvoluted diffraction pattern. Diffractive imag-
ing using HIO with RL (8=0.5, 5000 iterations) and ER with RL
(5000 iterations); support 2048 X 50 pixels real-positive constraints
and started at a random phase. Central missing data were calculated
using a diffraction pattern.

edges of meshes that supported the target MWCNT. Figure
4b’ is an image reconstructed using Fig. 4(b) before the de-
convolution was applied. The influence of shrinking the re-
constructed area in the vertical direction corresponded to the
transverse-coherence length 63.1 nm calculated by the rela-
tion A/ (2«). The reconstructed wall structure in the horizon-
tal direction [see the inset in Fig. 4b’] was observed. Figure
4(c) shows the central area of the diffraction pattern after the
proposed deconvolution was applied. The fine structures of
the interference fringes are clearly observed. The intervals
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between fringes are slightly wider than those in Figs. 1(a)
and 3(b). Figure 4¢’ is a reconstructed image using Fig. 4(c).
Although the blurred region remained, the reconstructed area
in the vertical direction was expanded. In addition, the wall
structures in the horizontal direction [see the inset in Fig.
4¢’] were improved. Thus, we demonstrated the efficacy of
the proposed deconvolution method by both numerical ex-
periments and practical measurements.

In this Rapid Communication, we examined the convolu-
tion and deconvolution of beam divergence for diffractive
imaging. We confirmed that the influence of beam diver-
gence on a reconstructed image resulted in the shrinkage of
the area of the reconstructed structure. For the problems of
beam divergence and quantum noise, we proposed a decon-
volution algorithm for diffractive imaging. The algorithm re-
duced the noise’s effect and improved the reconstructed im-
age. The algorithm was demonstrated by applying it to the
diffraction pattern obtained from a MWCNT. In our calcula-
tions, we used tight support, in which the support is the same
size as the target object. In this condition, the convergences
occurred because an oversampling ratio between target area
and total detected area is about 40. Actually, similar images
using different initial images were obtained at the final stage,
although the intermediate images generally depend on the
initial conditions. In this study, we assumed that the beam-
divergence distribution was a priori knowledge; however, in
the case of imperfect distribution, it is necessary to apply a
blind deconvolution method to diffractive imaging.’*> We
also verified the maximum entropy algorithm instead of us-
ing the Richardson-Lucy algorithm. Although we did not rec-
ognize any crucial difference between these methods, further
research will be needed to examine these algorithms and
their applications to various experimental data.
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